HIGH RATE E-BEAM YBCO PROCESS ON TAPE

Jonathan Storer, Chris Sheehan, Igor Usov, David Reagor
MST Division- Superconductivity Center
Los Alamos National Laboratory
Los Alamos, New Mexico 87545
\$500k, 1.5 FTE

Jeong-uk Huh*, Gertjan Koster, Gerd Fischer**, R.H. Hammond, M.R. Beasley
Geballe Laboratory for Advanced Materials
Stanford University
Stanford, CA 94305-4045
*AFOSR
** DOE support:\$ 36k

- Introduction Storer
- Materials science Stanford Hammond
- Reel-to-Reel processing LANL Storer
- Compulsory slides Storer
- Questions Storer/Hammond

Co-evaporation produces high Jc films

1.0 MA/cm² (SF, 77K) 1.1 micron thickness

Evaporation has high throughput potential for making thick films

Multi-hundred kW systems evaporating kg/hour exist in industry.

Examples:

Turbine blades
Titanium Metal Matrix Composites

Most likely: least expensive raw materials

Results at Stanford show that liquid facilitated growth results in rapid growth of YBCO.

- •High $J_c > 1$ MA/cm²
- Lower fall-off with thickness -> higher I_c
- •Thick film potential > 5 microns
- Wide area at high linear speed (throughput)
- Pure, least expensive feedstock

Outline

- Goals: (AFOSR Sponsorship)
 - Phase stability of YBCO
 - Phase equilibrium of thin films, role of liquid Ba-Cu-O
 - Growth morphology
- Introduction
 - Tools
 - Evaporation facility
 - FTIR
 - XRD Dome
- Example of FTIR
 - Determination of liquid BaCu₂O₃ → (s)CuO + (s)BaCuO₃ in pressure, temperature
 - Monitor YBCO formation

Outline

- Example of Dome XRD
 - Growth of precursor YBCO at 830°C as add O₂
 - Reaction of CeO₂ and YBCO
 - Comparison of growth at three O₂ pressures
 - Growth of low temperature precursor YBCO as function of temperature at three fixed O₂ pressures
- Lessons learned in XRD Dome
- Processing in evaporation chamber
 - In-situ with pause
 - Data: Jc ~ 1MA/cm², XRD, R(T) on RABiTS
 Jc(H,77) compared with PLD on RABiTS
 - -TEM Lateral growth
- Substrate used: LAO crystals, RABiTS(AMSC), IBAD-MgO(LANL)

YBCO stability diagram

region where YBCO is stable (P,T)

where liquid Ba-Cu-O transition;

(L)BaCu₂O₃→(S)CuO+(S)BaCuO₃

Stanford University

Phase Diagram

Expected phase diagram (Wong-Ng, Cook)

Proposed metastable Diagram Based on Y_2O_3 - BaCuOx-123

Film growth method

Electron-beam reactive co-evaporation

> Deposition rate 100 ~ 300 Å/s

Deposition pressure 5×10⁻⁵ Torr

Fourier Transform InfraRed set up

Used to monitor dielectric properties during and post deposition wave lengths 500 to 6000cm⁻¹

Stanford Universit

XRD Dome Experiments

Controlled Atmosphere XRD

XRD heating dome

Capable of taking XRD measurements while heating the sample under a certain environment

Great way to find the post-deposition Condition for YBCO

Example of FTIR

Determination of liquid Ba-Cu-O decomposition: BaCu₂O₃ → (s)CuO + (s)BaCuO₃

Path 2 - No change till ~ 650°C: supercool liquid → Glass

Stanford University

FTIR during and After YBCO Deposition

Examples of XRD Taken in Dome

A. Time sequence of growth on RABiTS: /CeO₂/YSZ/Y₂O₃/Ni(W)

Reaction: YBCO + CeO₂ → BaCeO₃ – Does this prevent Epitaxial growth?

Monitor YBCO (005) & CeO₂

Conclusion: 123 has nucleated C-axis before CeO₂ decays

Annual DOE Peer Review August 2-4, 2005

EST. 1943

Example of XRD Dome:

B. Traces of temperature and pressure with the dome experiment:

Example of XRD Taken in Dome:

C. Growth of low temperature precursor Investigate where in Po₂, T growth occurs

- Samples made at 300°C in 5×10⁻⁵Torr O₂ on LAO
- Mount in dome heat to 650°C in Argon
- Heat in three Po₂

Heating in 5% Po₂

Heating in 0.25% Po₂

Heating in 0.05% Po₂

EST. 1943

Summary

Sample #	% O ₂	Rapid Growth Temp	Time for Growth	(005)/(103)
489A1	5	880°C	2 min	13
489A6	0.25	830°C	5 min	25
492A1	0.05	810°C	8 min	110

On LAO

Conclusions:

- Majority of growth occurs near liquid line
- Rate of growth higher PO₂, higher temperature
- (103) less at low growth rate, low temperature

Lesson Learned in XRD Dome

RABiTS and IBAD-MgO-LMO

Region 1

- Slow growth
- "Perfect" c-axis
- Hard to get O₂ in
- No pinning << 1MA/cm²

Region 2

- Fast growth
- New tech required to suppress
 (103) → Jc ~ 1MA/cm² (1.1µm)

Region 3

- Polycrystalline
- Homogeneous nucleation
- Very rapid growth < 1sec

Processing in Evaporation Chamber

- Deposit at 5×10⁻⁵Torr O₂, 830°C
- Add O₂ 2mTorr and pause for seconds
 - Form "Glassy" state
- Add more O₂
- Cool down in O₂
- 300°C, Atmosphere O₂

Los Alamos

Processing in Evaporation Chamber (cont)

Sample 478A3 (1.1µm) – RABiTS (AMSC)

Note: Small(103), No a-axis, BaCeO₃ formed by reaction

Feldmann: Measured and Compared

Jc: 1.1um
0.4um – thinned
Stanford
PLD/RABiTS - ORNL

478A3 - RABiTS

0.6 micron PLD/RABiTS
Cantoni et al (ORNL)
(intra-grain/single crystal)
Jc(0T) = 4.2,4.5 MA/cm2

Feldmann: Measured and Compared

MOD data from:

Kim et al, PRB 71, 104501 (2005)

Jc: 1.1um 0.4um – thinned Stanford

MOD - Kim et al (AMSC) 478A3 - RABITS

Processing in Evaporation Chamber

(cont)

Jc(H): Feldmann-Wisc.
Thinned 1.1 → 0.4um, Slight change

Note: No thickness dependence 1.1 – 0.4µm

Suggests laminar growth grain structure, liquid phase involved

Comparable with 0.6µm PLD with Jc(0) = 4.2 MA/cm2

Processing in Evaporation Chamber (cont)

Sample 491A2.5 - RABITS

Very good clean C-axis YBCO

Processing in Evaporation Chamber

(cont)

491A2.5 - RABITS

Conclusions

- FTIR has shown signature effects in the processing of YBCO that give important information on the phase stability and phase states during formation.
- The ex-situ XRD-Dome has shown:
 - Why CeO₂ reaction with Ba is not a serious effect on the epi of YBCO.
 - Where in P, T the growth(assisted by liquid) occurs.
 - Types of growth in P, T region of stability diagram.
- Techniques developed to make MA/cm² on tape at 1.1um, which when etched, shown independence in thickness. This leads to a conclusion that lateral growth is the growth mode as shown by TEM.

FOUR ISSUES

Composition – 3 pools, different volatilities

Oxygen – sufficient and compatible

Temperature – controllable and uniform

Epitaxy – compatible substrate

Reel-to-Reel Coater at LANL

- •25 kW differentially-pumped electron gun
- •Tunable Laser AA (TDLAA) vapor sensors (Y, Ba)
- HCL AA vapor sensor (Cu)
- Resistively heated tape
- Specialized software
- Microwave oxygen plasma applicator

Equipment donated by 3M Company

Resistively heated tape

- •Heat applied directly to tape.
- Pyrometer can view tape directly w/o hotter background.
- •No burnout of quartz bulbs or plates to coat-up.
- •Width & length scalable.
- Substrate thickness variations or coating conductivity can affect temperature.
- •Emissivity problem same as IR heater.
- Arcing possible, conductive backside required.

Current applied to tape through two water-cooled wheels and slip rings.

SUBSTRATES

Both IBAD-MgO/CeO₂ (LANL) and RABiTS (AMSC) are being used in the LANL reel-to-reel process.

Microwave plasma to provide atomic oxygen

'06: characterize with AA and optimize

Controls for three vapor sources

scanned electron beam

Atomic Absorption: Robust, Accurate, Fast

Non-intrusive and windows do <u>not</u> coat-up.

Receive

Tunable Diode Laser AA: yttrium and barium

Note: 137Ba 11% 138Ba 72%

Atomic absorption sensor - copper

Lasers cannot reach the excessively strong ground state absorption line at 325 nm so use hollow cathode lamp (HCL)

Laser for copper is still a possibility!

RBS indicated non-uniform depth distribution of elements

Non-uniform

(Linear Source Geometry)

Uniform

(Triangular Source Geometry)

Ce036b (ICP: 17.8%, 27.0%, 55.2%)

700

1.8

Source Geometry Modified

Programmable sweep Pierce-type electron gun also offers flexibility in source geometry.

Linear Source Geometry

Triangular Source Geometry

LANL Co-Evaporation Composition in agreement with Stanford research This composition maintained > ½ hour on moving tape

Ex situ composition determined by Inductively Coupled Plasma Emission Spectroscopy (ICP)

in situ deposition using O_1 or O_3 .

Max P_{cham}=10 mT?

YBCO on IBAD-MgO/CeO₂ has good texture

ce056c made at LANL, annealed at Stanford

Criterion: Results

- 1. J_c of 1 MA/cm² 1.1 micron thick YBCO on RABiTS.
- 2. LANL has an operational, tape-based, computer-driven, coevaporation system.
- 3. The FTIR tool has elucidated the details of the YBCO formation.
- 4. The XRD-Dome tool has elucidated details of the crystallization process.
- 5. The moving tape co-evaporation process has produced YBCO films on RABiTS and IBAD substrates.
- 6. Composition control at LANL has been demonstrated.
- 7. A Cu AA sensor was developed.

Criterion: Performance

- ✓ Goal: Install and improve equipment for electron beam coevaporation at LANL.
- ✓ Goal: Operate equipment for electron beam co-evaporation with AA sensors, computer control and specialized software.
- ✓ Goal: Develop a evaporation (e-beam and thermal) deposition method capable of producing high Jc YBCO films.
- ✓ Goal: Produce YBCO films on RABiTS and IBAD.
- ✓ Goal: Develop a new atomic absorption (AA) tool for copper and demonstrate composition control (+/-2 at%) using computers for automation.

Criterion: Research Integration

- 1) There is a fruitful collaboration between Stanford and LANL that has improved the total program capabilities. Stanford is mapping out the pressure-temperature stability plot which is being used by LANL to demonstrate the process on moving tape.
- 2) LANL, through its CRADA with American Superconductor, has obtained RABiTS. It has been used by Stanford and LANL.
- 3) Both partners are also using LANL IBAD substrate.
- 4) The LANL co-evaporation program is co-located with LANL's PLD YBCO and IBAD operations. These experts are intimately involved with this program.
- 5) University of Wisconsin (Dr. Matt Feldman) made measurements of Jc on RABITS.
- 6) LANL's TEM is being used to elucidate growth patterns.
- 7) LANL's RBS has shown way to uniformity.
- 8) XRD and electrical measurements on Stanford samples is ongoing.
- 9) Patent filed.

Criterion: 2006 Plans

- 1) Produce 1 meter of 1 cm tape with an Ic of 100 Amperes (SF, 75K).
- 2) Investigate post-annealing capitalizing on materials science work from Stanford. If promising, add annealing to the tape path.
- 3) Investigate oxygenation methods:
 - a) Activated oxygen using the microwave-powered oxygen plasma or ozone.
 - b) Explore higher ambient O_x pressure ~10 mT.
 - c) Install and operate an "oxygen pocket" device for moving tape.
 - d) Characterize and maximize O₁ generation using AA.
- 4) Improve the tape thermometry through pyrometer improvements and calibration.
- 5) Stanford and LANL conduct sample exchange, visits and information in order to achieve these plans.

